Partial Regularity for the Stochastic Navier-stokes Equations

نویسندگان

  • FRANCO FLANDOLI
  • MARCO ROMITO
چکیده

The effects of random forces on the emergence of singularities in the Navier-Stokes equations are investigated. In spite of the presence of white noise, the paths of a martingale suitable weak solution have a set of singular points of one-dimensional Hausdorff measure zero. Furthermore statistically stationary solutions with finite mean dissipation rate are analysed. For these stationary solutions it is proved that at any time t the set of singular points is empty. The same result holds true for every martingale solution starting from μ0-a.e. initial condition u0, where μ0 is the law at time zero of a stationary solution. Finally, the previous result is non-trivial when the noise is sufficiently non-degenerate, since for any stationary solution, the measure μ0 is supported on the whole space H of initial conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Partial Regularity of a 3D Model of the Navier-Stokes Equations

We study the partial regularity of a 3D model of the incompressible Navier-Stokes equations which was recently introduced by the authors in [11]. This model is derived for axisymmetric flows with swirl using a set of new variables. It preserves almost all the properties of the full 3D Euler or Navier-Stokes equations except for the convection term which is neglected in the model. If we add the ...

متن کامل

A new proof of partial regularity of solutions to Navier Stokes equations

In this paper we give a new proof of the partial regularity of solutions to the incompressible Navier Stokes equation in dimension 3 first proved by Caffarelli, Kohn and Nirenberg. The proof relies on a method introduced by De Giorgi for elliptic equations.

متن کامل

On regularity of stationary Stokes and Navier-Stokes equations near boundary

On regularity of stationary Stokes and Navier-Stokes equations near boundary KYUNGKEUN KANG Received: date / Revised version: date – c Springer-Verlag 2001 Abstract. We obtain local estimates of the steady-state Stokes system “without pressure” near boundary. As an application of the local estimates, we prove the partial regularity up to the boundary for the stationary Navier-Stokes equations i...

متن کامل

Stochastic Differential Equations: a Wiener Chaos Approach

A new method is described for constructing a generalized solution for stochastic differential equations. The method is based on the Cameron-Martin version of the Wiener Chaos expansion and provides a unified framework for the study of ordinary and partial differential equations driven by finiteor infinite-dimensional noise with either adapted or anticipating input. Existence, uniqueness, regula...

متن کامل

Ergodicity of the 3d Stochastic Navier-stokes Equations Driven by Mildly Degenerate Noise

We prove that the any Markov solution to the 3D stochastic Navier-Stokes equations driven by a mildly degenerate noise (i. e. all but finitely many Fourier modes are forced) is uniquely ergodic. This follows by proving strong Feller regularity and irreducibility.

متن کامل

Solutions of Stochastic Navier – Stokes Equations

driven by white noise Ẇ . Under minimal assumptions on regularity of the coefficients and random forces, the existence of a global weak (martingale) solution of the stochastic Navier–Stokes equation is proved. In the two-dimensional case, the existence and pathwise uniqueness of a global strong solution is shown. A Wiener chaosbased criterion for the existence and uniqueness of a strong global ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002